Archivi tag: proporzioni

Solido rotazione problema risolto N°196

Esercizio N° 196 La somma delle basi di un trapezio isoscele è di 36 cm e la base maggiore supera la minore di 16 cm. Sapendo che l’area del trapezio misura 270 cm2, determina l’area della superficie totale e il volume del solido che si ottiene facendo ruotare il trapezio di 360° intorno alla base minore.

img196

Quando conosciamo la somma e la differenza di due valori possiamo procedere così (vedi nostro post):

  1. Togliamo dalla somma la differenza (36 – 16 = 20)
  2. Dividiamo per 2 il risultato (20 : 2 = 10) per ottenere il valore del numero più piccolo
  3. Sommiamo al numero piccolo la differenza (10 + 16 = 26) per ottenere il valore del numero più grande

Quindi la base maggiore misura 26 cm mentre la base minore misura 10 cm.

Adesso calcoliamo l’altezza del trapezio usando la formula inversa dell’area.

Ricordiamo che l’area del trapezio si calcola con questa formula:

fig1

Per cui la formula inversa ci permette di calcolare l’altezza:

fig2

 

Questo è il nostro trapezio isoscele.

fig3

Se adesso facciamo ruotare di 360° il trapezio attorno alla sua base minore otteniamo questo solido. Si tratta di un cilindro con due cavità coniche.

fig4

Per calcolare l’area della superficie totale di questo solido di rotazione dobbiamo sommare quella laterale del cilindro e quelle laterali dei due coni.

Il cilindro è alto 26 cm ed ha il raggio di base di 15 cm.

fig5

I due coni (uguali) hanno il raggio di base sempre di 15 cm, il loro apotema si calcola con Pitagora:

fig6

Quindi l’area laterale del cono si trova così:

fig7

Ora basta sommare le tre aree laterali per trovare l’area totale del solido:

fig8

Il volume è formato dal quello del cilindro a cui dobbiamo sottrarre le due cavità formate dai due coni.

fig9

Volume totale del solido di rotazione:

fig10

Proporzioni in motocicletta

Per gareggiare con questa motocicletta dobbiamo essere rapidi nel risolvere le proporzioni! Ad esempio quale sarà il valore della “x” che soddisfa questa proporzione? moto

2/4 = x/6 soltanto se x = 3! Infatti 2/4 = 3/6 perché sono frazioni equivalenti. Siccome dobbiamo essere veloci nel risolvere questi quesiti per non essere raggiunti dagli avversari, possiamo usare questo trucchetto (che poi sarebbe l’applicazione della proprietà fondamentale delle proporzioni). Per trovare il valore della “x” (che è il medio della proporzione) si devono moltiplicare gli estremi 2 · 6 e dividere il risultato per l’altro medio: 4.

medio

A questo punto non rimane che augurare Buon Divertimento!

Se vuoi giocare a schermo intero, clicca qui.

Come risolvere una semplice proporzione

Prima di iniziare bisogna ricordare come si chiamano i vari termini che formano la proporzione:

Il termine da trovare di solito si indica con la lettera “x”. Vediamo come trovare questa incognita nei vari casi:

 

1) la “x” è un medio:  6 : x = 3 : 5 allora il medio si trova dividendo il prodotto degli estremi per l’altro medio:

x1

2) la “x” è un estremo: 5 : 15 = 20 : x allora l’estremo di trova dividendo il prodotto dei medi per l’altro estremo:

x2

3) esiste anche il caso in cui i medi siano entrambi incognite: 12 : x = x : 27 in questo caso la proporzione di chiama “continua” e si risolve in questo modo, ricordando che la proprietà fondamentale delle proporzioni dice che il prodotto dei medi è uguale al prodotto degli estremi:

x3

4) lo stesso vale anche nel caso in cui la proporzione continua abbia gli estremi come incognite: x : 9 = 25 : x

si usa ancora la proprietà fondamentale uguagliando il prodotto degli estremi a quello dei medi:

x4

 

Se volete cimentarvi con alcune domande relative alle proporzioni allora cliccate qui.